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We show that, under rather general assumptions, the phase diagram of a quasi-one-dimensional repulsive
Fermi system consists of two ordered phases: the density wave, spin or charge, and the superconductivity. It is
demonstrated that the symmetry of the superconducting order parameter is a nonuniversal property sensitive to
microscopic details of the model. Three potentially stable superconducting states are identified: they are triplet
f-wave, singlet dx2−y2-wave, and dxy-wave. The presence of multiple competing superconducting states implies
that for a real material this symmetry is difficult to predict theoretically and hard to probe experimentally since
artifacts of theoretical approximations or variations in experimental conditions could tip the balance between
the superconducting phases.
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I. INTRODUCTION

Many theorists hold that the superconductivity in quasi-
one-dimensional �Q1D� materials may be explained with the
help nonphonon many-body mechanism.1–17 Yet, there is
substantial disagreement about the details of such mecha-
nism. Moreover, different theories predict different order-
parameter symmetries: p, dx2−y2, f , or dxy wave.8–11 The ex-
perimental findings18–25 have been unable to resolve these
controversies.

In this paper we explain why establishing the symmetry
of the order parameter is such a hard task. It will be demon-
strated that within the framework of the nonphonon mecha-
nism there are three metastable superconducting states,
dx2−y2, f , and dxy wave, which compete to become the ground
state. This circumstance has an important implication for
both theory and experiment: to find the ground-state symme-
try one has to resolve small energy differences between the
contesting states. Thus, an approximate theoretical scheme
might calculate these differences completely wrong; a slight
variation in the model may cause a phase transition. An ex-
perimentalist has to keep in mind that, despite the obvious
similarities between various families of the Q1D supercon-
ducting materials in chemistry and structure and despite
“universality” of their phase diagram,25 the superconducting
order does not have to be identical in all these metals. More-
over, even an individual sample may experience phase tran-
sitions between different types of superconductivity as the
pressure or magnetic-field change �e.g., Ref. 24�. This sug-
gests that experimental detection of the order-parameter
symmetry should be done for a specific material rather than a
class of materials; a reliable theoretical prediction of this
symmetry is nearly impossible.

Let us briefly outline main ideas of the discussion. Due to
the presence of nonperturbative many-body effects, the Q1D
metal cannot be treated by the usual mean-field theory. Thus,
to circumvent this difficulty, we derive the low-energy effec-
tive Hamiltonian. Unlike the original microscopic model, the
anisotropy of the effective model is low, and it may be stud-
ied with the help of the mean-field approximation. Applica-
tion of mean-field theory to the effective model1,2 allows us
to find the phase diagram of the Q1D metal. At good nesting

the system freezes into a spin-density �SDW� or charge-
density wave �CDW�. The antinesting destroys the density-
wave phase and makes superconductivity possible. In super-
conducting phase we find three order parameters, which may
be stable in our model.

The paper is organized as follows. The Q1D model and its
effective low-energy description are presented in Sec. II. The
phase diagram is obtained in Sec. III. Section IV is reserved
for discussion of the results.

II. Q1D MODEL AND ITS EFFECTIVE HAMILTONIAN

A. Bare Hamiltonian

The model we study is well known. The system consists
of one-dimensional �1D� chains, which are arranged into a
square array to form a three-dimensional �3D� system. Its
Hamiltonian has the form

H = �
i

Hi
1D + �

ij

Hij
hop + Hij

��, �1�

where Hi
1D is the Hamiltonian of an individual 1D chain i,

Hi
1D = Hi

kin + Hi
��, �2�

Hi
kin = − ivF�

p�

p� dx:�p�i
† ���p�i�: , �3�

Hi
�� =� dx�− J2kF

S2kFi · S−2kFi − g2kF
�2kFi�−2kFi

+ g4��L↑i�L↓i + �R↑i�R↓i�� , �4�

�p� = :�p�
† �p�: , �5�

�2kF
= �

�

�R�
† �L�, �−2kF

= �2kF

† , �6�

S2kF
= �

���

������R�
† �L��, S−2kF

= S2kF

† . �7�

Here index p= �1 labels different chiralities of 1D elec-
trons, right movers �R� �p=1� and left movers �L� �p=−1�.

PHYSICAL REVIEW B 79, 224501 �2009�

1098-0121/2009/79�22�/224501�6� ©2009 The American Physical Society224501-1

http://dx.doi.org/10.1103/PhysRevB.79.224501


Vector �� is composed of three Pauli matrices. The coupling
constants g4,2kF

and J2kF
are positive, which corresponds to

repulsion between electrons. The model’s microscopic cutoff
is denoted by �.

We expressed our Hamiltonian Hi
�� in a somewhat un-

usual form. In a more traditional notation this operator looks
as such,

Hi
�� =� dx�g1�2kFi�−2kFi + g2�

���

�L�i�R��i

+ g4��L↑i�L↓i + �R↑i�R↓i�� , �8�

g2kF
=

g2

2
− g1, �9�

J2kF
=

g2

2
. �10�

Both forms are absolutely equivalent. Equation �4� suits us
more for it explicitly shows the couplings of the density
waves.

Closely located chains are coupled by single-electron
hopping Hij

hop and electron-electron interaction Hij
��,

Hij
hop = − t�i − j��

p�
� dx��p�i

† �p�j + H.c.� , �11�

Hij
�� =� dx�g0

��i − j��i� j + g2kF

� �i − j���2kFi�−2kFj + H.c.�� ,

�12�

� = �
p�

�p�. �13�

We assume that our microscopic model is characterized by
the following hierarchy of material constants. The anisotropy
ratio is small,

r = t/vF� � 1. �14�

In addition, the 2kF coupling constants are smaller than the
coupling constant corresponding to interactions of smooth
components of the density, and the in-chain interactions are
larger �or much larger� than the interchain interactions,

g2kF

� � g0
� 	 g2kF

� J2kF
	 g4 � vF. �15�

The smallness of the transverse couplings as compared to the
in-chain coupling constants assures that at high energy the
system may be viewed as a collection of weakly perturbed
1D conductors. The smallness of all coupling constants as
compared to vF indicates that weak-coupling arguments may
be applied.

B. Effective description

It is tempting to study the low-temperature phase diagram
of H �Eq. �1�� with the help of the mean-field approximation.

Yet, one has to keep in mind that this idea is wrong. It is
demonstrated by Prigodin and Firsov,26 who investigated the
renormalization-group �RG� flow of the Q1D metal, that at
high energy the Cooper channel and the particle-hole channel
are coupled, the usual ladder summation is not adequate, and
it is necessary to use the parquette approximation. Failure of
the ladder approximation implies the failure of the mean-
field theory since the two approaches are equivalent.

Fortunately, this coupling between the channels is a 1D
feature, which disappears at sufficiently low energy. Indeed,
it is also proven in Ref. 26 that the weakly interacting Q1D
Fermi system experiences the dimensional crossover at low
energy; below the crossover the channels decouple, and the
ladder approximation �hence, the mean-field theory� is valid
again.

Thus, if we need to know low-energy properties of the
model �e.g., the phase diagram�, it is enough to derive the
effective Hamiltonian valid below the dimensional crossover
for this Hamiltonian may be analyzed with the help of usual
mean-field approximation.

How does this Hamiltonian look like? This question is
addressed in several theoretical papers.1–4 These papers dis-
cuss in detail the dependence of the effective coupling con-
stants on the bare one. However, for our purposes it is
enough to guess general features of the low-energy Hamil-
tonian. Our conjecture is based on two assumptions about
RG flow: �i� at high energy the transverse single-electron
hopping is the most relevant operator in the problem and the
crossover occurs when the effective transverse hopping be-
comes comparable to the running cutoff; �ii� at high energy
the SDW and CDW susceptibilities are dominant; among
these two the SDW susceptibility prevails.

What do these statements mean physically? Assumption
�i� is valid provided that bare interactions are sufficiently
weak �for an accurate criterion of the single-electron hopping
relevance one can consult, e.g., Ref. 27�. It guarantees that
our low-energy model is Fermi liquid with weak effective
coupling constants and low effective anisotropy,

r̃ = t̃/ṽF�̃ 	 1. �16�

When �i� is violated, the system freezes into an ordered state
�typically, SDW or CDW� before reaching the Fermi-liquid
regime. Needless to say, our analysis is inapplicable in such
a situation.

Assumption �ii� is a consequence of the electron repulsion
combined with the fact that high-energy physics is purely
one dimensional. It is known that the 1D metal has strongly
divergent susceptibilities toward SDW and CDW. Of these
two, the former is stronger due to the in-chain backscattering
g1. Because of all this, the SDW susceptibility prevails in the
high-energy regime.

This effect has nothing to do with the nesting properties
of the actual Fermi surface, which is a low-energy feature.
Moreover, one can say that this abundance of the high-
energy modes, enhancing SDW correlations regardless of the
nesting, is a peculiarity of Q1D metal, which makes its phys-
ics so unusual. Taking �i� and �ii� into account we can write
the following effective Hamiltonian:
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H̃ = �
i

H̃i
kin + H̃i

�� + �
ij

H̃ij
hop + H̃ij

�� + H̃ij
SS. �17�

The spin-spin transverse interaction term H̃ij
SS is equal to

H̃ij
SS =� dx�J̃0

��i − j�Si · S j + J̃2kF

� �i − j��S2kFi · S−2kFj + H.c.�� ,

�18�

S = �
p���

�����:�p�
† �p��: . �19�

This term, although absent in the microscopic Hamil-

tonian, appears at low energies. Other terms of Eq. �17�, H̃i
kin,

H̃i
��, H̃ij

hop, and H̃ij
��, have the same structure as the corre-

sponding operators without tilde �Hi
kin, Hi

��, Hij
hop, and Hij

���
but the former has renormalized constants �ṽF instead of vF,
t̃ instead of t, and g̃’s instead of g’s�. On top of this, the
cutoff of the effective theory is much smaller than the mi-

croscopic cutoff: �̃��.
Hierarchy of the effective coupling constants differs from

Eqs. �14� and �15�. At the dimensional crossover the trans-
verse hopping becomes comparable to the cutoff �see Eq.
�16��. The effective system remains anisotropic �for example,
its Fermi surface consists of two warped sheets disconnected
from each other�, yet, this anisotropy is not as strong as the
anisotropy of the original microscopic system.

Since at high energy the dominating fluctuations are SDW
and CDW, 2kF coupling constants are enhanced,

g̃2kF

 g̃4, �20�

J̃2kF

 g̃4, �21�

J̃2kF

� 
 J̃0
�, �22�

g̃2kF

� 
 g̃0
�. �23�

All coupling constants are smaller than the renormalized
Fermi velocity ṽF. It is tempting to declare that since SDW
correlations dominate over CDW correlations in the high-

energy regime, the SDW coupling constant J̃2kF

� is bigger
than the CDW constant g̃2kF

� . However, this is not necessarily
true for bare J2kF

� is zero while g2kF

� �0. This might affect the
outcome at the crossover scale.

III. PHASE DIAGRAM

In this section we apply the mean-field analysis to the

effective Hamiltonian H̃ �Eq. �17��.

A. Density-wave phases

The low-temperature phase of the effective Hamiltonian
depends on the nesting properties of the Fermi surface. As-
sume first that only nearest-neighbor hopping amplitude t1 is

nonzero. In this case the Fermi surface nests perfectly. The
SDW susceptibility is equal to

�SDW =
1

�ṽF

ln
2ṽF�̃

T
� . �24�

The CDW susceptibility is the same. As it is obvious from
Eq. �18�, the coupling constant for SDW is equal to g̃SDW

= J̃2kF
+zJ̃2kF

� , where z is the number of the nearest neigh-
bours. The usual mean-field equation for the critical tempera-
ture g̃SDW�SDW�TSDW�=1 gives us the formula for TSDW,

TSDW
max = 2ṽF�̃ exp�− �ṽF/�J̃2kF

+ zJ̃2kF

� �� . �25�

The superscript “max” is to remind us that at perfect nesting
the transition temperature is the highest. The CDW coupling
constant g̃CDW= g̃2kF

+zg̃2kF

� may be larger or smaller than
g̃SDW depending on the bare values of g, g�, and J2kF

. The
density-wave type is determined by comparison of the cou-
pling constants. Namely, if it is true that

g̃CDW = g̃2kF
+ zg̃2kF

�  g̃SDW = J̃2kF
+ zJ̃2kF

� , �26�

the ground state is CDW; otherwise, it is SDW. When the
nesting is spoiled �for example, by introducing next-to-
nearest-neighbor hopping amplitude t2�, the density-wave
critical temperature decreases. This happens because anti-
nesting destroys the divergence of the susceptibility. For ex-
ample, one might write for SDW �the case of CDW is iden-
tical�,

�SDW �
1

�ṽF
� ln�2ṽF�̃/T� , if T  t̃2,

ln�2ṽF�̃/t̃2� , if T 	 t̃2,
 �27�

where t̃2 is the renormalized value of t2. When t̃2 is bigger
than certain critical value,

t̃2  t2
c = TSDW

max , �28�

the mean-field equation g̃SDW�SDW�TSDW�=1 has no solution.
Thus, exponentially small t̃2 is enough to destroy the density-
wave phase.

B. Superconductivity

When the antinesting destroys the density wave, the sys-
tem becomes superconducting. To demonstrate this let us in-
troduce the following set of Cooper-pair-creation operators,

��̂ij���� = �L�i
† �R��j

† . �29�

Operator ��̂ij���� creates a Cooper pair composed of a left-
moving electron of spin � on chain i and of a right-moving

electron of spin �� on chain j. Matrix �̂ij may be symme-
trized with respect to the chain indices,

�̂ij
s/a =

1

2
��̂ij � �̂ ji� . �30�

The superscript “s” �“a”� stands for “symmetric” �“antisym-

metric”�. Further, it is convenient to write �̂ij
s/a as a sum of
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three symmetric matrices i���y and one antisymmetric matrix
i�y,

�̂ij
s/a =

1
�2

�dij
s/a · �i���y� + �ij

s/ai�y� , �31�

where �� = ��x ,�y ,�z� is a vector composed of three Pauli ma-
trices. Operator �ij

s/a �dij
s/a� creates a Cooper pair in a singlet

�triplet� state. Using these operators we can rewrite H̃ij
�� and

H̃ij
SS as

�
ij

H̃ij
�� + H̃ij

SS = − �
ij
� dx�g̃x2−y2�ij

s ��ij
s �† + g̃xy�ij

a ��ij
a �†

+ g̃fdij
s · �dij

s �† + g̃f�dij
a · �dij

a �†� + ¯ , �32�

where the ellipsis stands for the terms, which cannot be ex-
pressed as a product of a Cooper-pair creation and Cooper-
pair destruction operators �for example, �L�

† �L���L��
† �L���.

The coupling constants are

g̃x2−y2 = 6J̃2kF

� − 2g̃2kF

� + 6J̃0
� − 2g̃0

�, �33�

g̃xy = − 6J̃2kF

� + 2g̃2kF

� + 6J̃0
� − 2g̃0

�, �34�

g̃f = 2J̃2kF

� + 2g̃2kF

� − 2J̃0
� − 2g̃0

�, �35�

g̃f� = − 2J̃2kF

� − 2g̃2kF

� − 2J̃0
� − 2g̃0

�. �36�

We see from Eq. �36� that the order parameter �da� is
always zero since the coupling constant g̃f� is always nega-
tive.

Three other order parameters may be nonzero. Consider
first dx2−y2-wave ���s��0�. This type of superconductivity is
at least metastable if

g̃x2−y2  0 ⇔ 3J̃2kF

�  g̃2kF

� . �37�

In the latter inequality we neglected g̃0
� and J̃0

� for they are
small �see Eqs. �22� and �23��.

Triplet f-wave superconductivity ��ds��0� is always
metastable since g̃f 0 �provided that Eqs. �22� and �23� are
satisfied�. This guarantees that after the density wave is de-
stroyed by the antinesting, the Q1D metal becomes a super-
conductor.

Singlet dxy-wave superconductivity ���a��0� is meta-
stable if g̃xy 0, which is equivalent to

g̃2kF

�  3J̃2kF

� . �38�

The true ground state is determined by comparison of the
mean-field transition temperatures for different supercon-
ducting order parameters. These temperatures are the solu-
tions of the equations g����Tc

��=1, where � is either f , or
dx2−y2, or dxy.

Let us compare first Tc
x2−y2

and Tc
f . These two order pa-

rameters have identical orbital structures. Therefore, their
susceptibilities are the same: �x2−y2 =� f. Consequently, in or-

der to determine the relative stability of dx2−y2-wave and

f-wave we must compare g̃x2−y2 and g̃f. Specifically, Tc
x2−y2

Tc
f if

g̃2kF

� 	 J̃2kF

� . �39�

Equation �39� implies that spin-density fluctuations, which

enhance J̃2kF

� , favor dx2−y2-wave over f-wave.5,15 Thus, prox-
imity to the SDW phase promotes the former type of order.
On the contrary, close to CDW the charge-density fluctua-
tions intensify, as a result of which effective coupling g̃2kF

�

grows, advancing the f-wave superconductivity.
To make this argument more concrete, consider the tran-

sition separating CDW and superconductivity. Stability of
CDW implies that Eq. �26� is fulfilled. This inequality may
be rewritten as

g̃2kF
− J̃2kF


z

4
�g̃x2−y2 − g̃f� . �40�

Observe that the bare constants satisfy �see Eqs. �9� and �10��

g2kF
	 J2kF

. �41�

If we assume that the renormalized coupling constants g̃2kF

and J̃2kF
satisfy the same inequality,

g̃2kF
	 J̃2kF

, �42�

then we obtain

g̃x2−y2 − g̃f 	 0. �43�

This means that CDW cannot have common boundary with
dx2−y2-wave superconductivity.

However, inequality Eq. �41� is not equivalent to Eq. �42�.
The former could be violated but the latter cannot. Therefore,
this argumentation points to a trend rather than establishes a
hard connection between the density-wave type and the
order-parameter symmetry.

The coupling constant for dxy-wave is always smaller than
g̃f,

g̃f − g̃xy = 8J̃2kF

�  0. �44�

This does not necessarily mean that f-wave superconductiv-
ity always overshadows the dxy-wave superconductivity.
These two have different orbital structures �the former is
symmetric with respect to inversion of the transverse coordi-
nates while the latter is antisymmetric�. Thus, it is possible to
choose the density of states in such a way that �xy � f. If
this happens and if the difference between g̃f and g̃xy �see Eq.
�44�� is not too large, the dxy-wave order parameter may be
more stable than f-wave. Therefore, we conclude that, when
dx2−y2-wave is unstable, both f-wave and dxy-wave can be
possible choices for the symmetry of the order parameter.

It is also important to note that the superconductivity be-
comes possible only in a system with sufficiently pro-
nounced anisotropy �r�1�. Otherwise, the 1D renormaliza-
tion is weak and
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g̃2kF

� � g2kF

� , g̃0
� � g0

�, J̃0,2kF

� � 0. �45�

As a result, instead of Eqs. �22� and �23�, one has to use Eq.
�15�. In this case all superconducting coupling constants are
negative because they are dominated by −2g̃0

� term.
In Fig. 1 we present the phase diagram, which emerges

from our discussion. It is drawn on the pressure-temperature
plane. The effect of the pressure is twofold. First, it increases
the transverse hopping, which leads to increase in the aniso-
tropy ratio r. As a result, the dimensional crossover tempera-
ture grows and the superconducting critical temperature de-
creases.

Second, the pressure increases the next-to-nearest-
neighbor hopping, spoiling the nesting properties of the
Fermi surface. Thus, the density-wave transition temperature
vanishes when the pressure exceeds some critical value pc.
This explains the major features of our phase diagram.

IV. DISCUSSION

We demonstrated under rather general assumptions that �i�
Q1D metal has a superconducting ground state and �ii� the
symmetry of the order parameter is sensitive to the details of
the interaction and the density of states.

This implies that the “universal” phase diagram of the
Bechgaard salts25 is a robust feature of Q1D metals, easily
reproducible theoretically. At the same time, prediction of the
order-parameter symmetry on the basis of the microscopic
model is virtually impossible for it requires very accurate
calculations of the competing states’ energies.

One must remember that different Q1D organic supercon-
ductors, despite many similarities they share, may have dif-
ferent symmetry of the superconducting order parameter.
Furthermore, it is possible that an individual sample experi-
ences a phase transition between different types of supercon-
ductivity if the external parameters �pressure, magnetic field�
change. It is possible that such a phenomena is indeed ob-
served experimentally; within the superconducting region of
�TMTSF�ClO a phase transition is detected when the exter-
nal magnetic field exceeds some critical value.24

Our approach, however, has some limitations. Namely, it
is not applicable in situations, where the dimensional cross-
over occurs due to transverse interaction rather than trans-
verse hopping.28

To conclude we discussed the symmetry of the order pa-
rameter in Q1D metallic Fermi system. It is demonstrated
that for a certain class of Q1D superconductors the order-
parameter symmetry is a nonuniversal feature. It is deter-
mined by a delicate interplay of microscopic constants char-
acterizing the system. The order-parameter type may easily
change in response to variation in external �pressure� or in-
ternal �doping� factors.
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